Structural Option Dr. Linda Hanagan October 5, 2007

TECHNICAL REPORT I STRUCTURAL CONCEPTS & EXISTING CONDITIONS

EXECUTIVE SUMMARY

This is an existing conditions report for the Kettler Capitals Iceplex, the practice facility for the Washington Capitals in Arlington, Virginia. The report starts with an in depth description of the existing structural systems. This includes typical framing plans for the reinforcing of the pre-existing parking structure, the floor system, roof system, and lateral resisting system. Then, an analysis of the building loading is provided. These loads include live loads, dead loads, snow loads, wind loads, and seismic loads. Next, using these loads, a spot-check of four framing elements was completed including a girder, a composite deck, a roof joist, and a lateral braced frame. Finally, it can be concluded that there are a few very minor differences between the original design and the analysis provided in this report. These differences could be because two different codes were used. Also, the design of some elements was made using manufacturer catalogs that are specific to certain material properties. If a used material is not exactly the material tabulated, varying designs will result.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	. 1
TABLE OF CONTENTS	2
INTRODUCTION	3
CODES AND MATERIAL PROPERTIES	4
STRUCTURAL SYSTEMS	5
Reinforcing Existing Parking Structure	5
Floor Framing	6
Roof Framing	9
Lateral System Framing	11
BUILDING LOADS	13
Live Loads	13
Dead Loads	13
Snow Loads	14
Wind Loads	15
Seismic Loads	
SPOT CHECK OF FRAMING DESIGN	17
Area 8B Girder	17
Composite Deck	17
Roof Joist	17
Lateral Braced Frame	17
CONCLUSION	19
Appendix	20
Beam Strengths from Geotechnical ReportSnow	20
Snow	21
Wind	24
Seismic	26
Girder Check	27
Composite Deck Check	29
Roof Bar Joist Check	30

INTRODUCTION

The Kettler Capitals Iceplex, which is the practice facility for the National Hockey League team, the Washington Capitals. It is located at the Ballston Common Mall in Arlington, Virginia at the intersection of Glebe Road and Randolph Street. This 137,000 SF facility was built on top an existing parking structure and houses two regulation sized ice rinks, corporate offices, a training facility, and a pro shop. At 60 ft. above street level, the Kettler Capitals Iceplex is the home of the highest ice rink in the United States.

Design for the Iceplex began in 2000; however, this was the third time the Ballston parking garage has been expanded. The original facility, which dates back to the 1950s, was a five story cast-in-place concrete structure reinforced with mild steel. Then in the 1980s, the parking garage was expanded two more times. In 1981, a five story L-shaped addition was constructed of cast-in-place posttentioned concrete. Then in 1986, the existing five level structure was topped with two more levels, one posttentioned concrete and the other composite steel. See Figure 1 for a schematic phasing diagram of these additions.

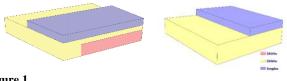


Figure 1

There were several challenges when designing the Iceplex. The initial challenge was figuring out how to safely build an ice rink and roof weighing a total of 235 psf dead load plus 130 psf live load over an existing structure that was designed for a total expansion of 60 psf dead load and 50 psf live load. Another challenge was controlling deflection over the long 200 ft. span of each ice rink. A consultant recommended that the deflection be as close to zero as possible in order to prevent the ice from cracking. The need for large column-fee spaces limited the locations where lateral members could be placed.

This report begins to discuss these structural issues and uses various analyses to explain the existing structural system of the Kettler Capitals Iceplex.

CODES AND MATERIAL PROPERTIES

Codes and Standards

The Kettler Capitals Iceplex was designed using Building Officials and Code Administrators, Inc (BOCA), 1996 and ASCE 7-95 for building loads and structure analysis. Concrete design used American Concrete Institute, ACI 318-95 and the Manual of Steel Construction –Allowable Stress Design, 9th Edition, 1989 was used for the steel design.

This report will use a newer version of code to analyze the existing structure. The International Building Code (IBC 2006) and ASCE7-05 was used to determine loads and analysis procedures. The concrete and steel codes used will be ACI 318-05 and AISC Steel Construction Manual –Load and Resistance Factor Design, 13th Edition 2005 respectively.

Material Properties

Concrete

Slab-on-grade	3500 psi	145 pcf
Reinforced Slabs	5000 psi	145 pcf
Reinforced Beams	5000 psi	145 pcf
Fill on Metal Deck	3500 psi	115 pcf
Columns	5000 psi	145 pcf
Walls	4000 psi	145 pcf
Grade Beams	3000 psi	145 pcf
Footings	5000 psi	145 pcf
Parking Level Concrete Topping	5000 psi	145 pcf
Rink Slab	5000 psi	115 pcf

Structural Steel

Rolled Shapes	ASTM A992, Grade 50
Channels, Angles, and Plates	ATMS A36
Structural Pipe	ASTM A53, Grade B, $F_y = 35$ ksi
Round HSS Shapes	ASTM A500, Grade B, $F_y = 42$ ksi
Structural Tubing	ASTM A500, Grade B, $F_y = 46$ ksi
Steel Joists	per Steel Joist Institute

STRUCTURAL SYSTEMS

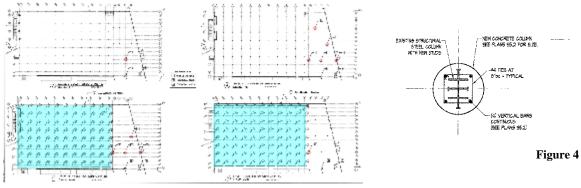
Reinforcing Existing Parking Structure

As previously mentioned, the actual load of the new Iceplex was about three and a half times that of the allowable expansion load of the existing parking structure. Inevitably, the existing parking structure needed to be reinforced before constructing the new addition.

Foundation

The structural engineer of record, Rathgeber/Goss Associates of Rockville, MD, recommended testing the soil as a first step in the reinforcing process. Engineering Consulting Services, Ltd. was hired to complete the testing. Test results showed that the allowable bearing pressure of the soil was 10,000 psf which was significantly higher than the 6,000 psf used in the original construction. Based on this information and the column loads from the new construction, it was concluded that only two footings needed to be expanded. These footings, along column line 9 (see Figure 2), were expanded 3'-0" in one direction. No increase in footing depth was necessary.

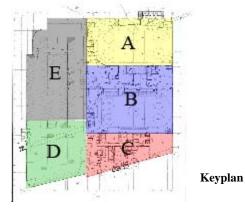
Columns


It was also recommended by Rathgeber/Goss that the existing concrete columns be core tested in order to analyze their compressive strength. Engineering Consulting Services, Ltd. was hired to perform these tests as well. However, due to the high density of reinforcing steel in the columns, testable cores were unobtainable. Therefore, a series of Windsor Probe tests were performed throughout the structure in lieu of the originally proposed concrete coring.

A total of nine Windsor Probe tests were performed throughout the existing parking structure. Five tests were located on the first floor, four on the fourth floor, and two on the sixth floor. ECS attempted to concentrate these tests primarily in locations where column loads would increase the greatest with the vertical expansion. After completing the tests, it was recommended that a compressive strength of 5,000 psi be assumed for the existing concrete columns. Since the original concrete strength was assumed to be 3,000 psi, this showed that the concrete had gained significant strength over time. Please see the appendix for the tabulated results.

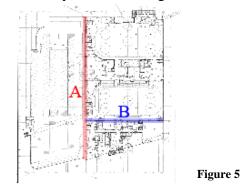
Megan Kohut	Structural Option
Kettler Capitals Iceplex	Dr. Linda Hanagan
Arlington, Virginia	October 5, 2007

Based on these results, the columns needing additional reinforcement were determined. A total of 11 columns on levels 3, 4, 5, and 6 were wrapped in carbon fiber reinforcing. See the columns shaded red in Figure 3 for the location of these columns. Gardner James Engineering, Inc. was commissioned to design this additional reinforcement. GJ chose a product called Aquawrap from Structural Composites, Inc. for the carbon fiber reinforcing. This allowed the ultimate axial load in the columns to be greater than the nominal capacity by a factor of 1.2.


In addition to the carbon fiber reinforcement, all existing steel columns in the parking structure (levels 5 and 6) were encased in concrete in order to provide the additional required capacity. See the columns shaded blue in Figure 3 for the locations of these columns and Figure 4 for a detail.

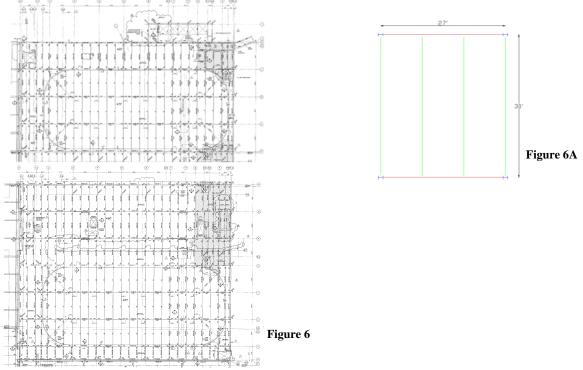
Floor Framing

This report will now concentrate on the framing plans for the new structure located on levels 8 and 9. Please see the keyplan below for area designations that will be used.



Expansion Joints

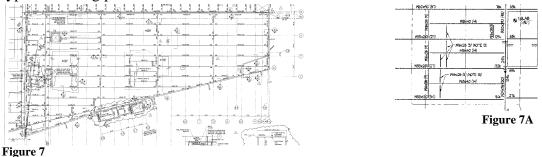
There were two expansion joints used in the construction of the new Iceplex, one running in the north-south direction and the other in the east-west direction. Please see Figure 5 for the locations of these joints. Expansion joint A, running north-south, separates the 8th


Megan Kohut	Structural Option
Kettler Capitals Iceplex	Dr. Linda Hanagan
Arlington, Virginia	October 5, 2007

floor parking structure from the 8th floor of the Iceplex. Expansion Joint B, running eastwest, separates the ice rinks from team facility including the team offices and locker rooms. Both these joints span vertically the entire height of the building.

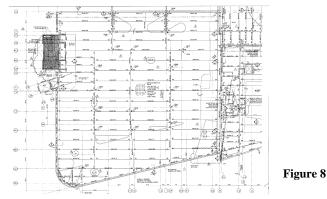
Areas 8A & 8B

Areas 8A and 8B are located on the 8th floor of the new Iceplex facility and are the location of both regulation-sized ice rinks. It was important to limit deflection of the concrete slab supporting the rinks in order to prevent the ice from cracking. The structural engineer and the ice rink consultant compromised to limit the deflection to L/480. This slab was constructed from $3\frac{1}{2}$ " lightweight concrete over 3" 18 gage galvanized composite deck (total thickness = $6\frac{1}{2}$ ") reinforced with #4 at 16" ceach way 2" below the slab. Supporting the slab are mostly composite W18x40s at 9'-0" oc spanning 30'-0". These W18s frame into larger steel composite beams which range from W21x50s to W36x150s. All shear studs are $\frac{3}{4}$ " dia. x 4" long. It was noted that rebar is not traditionally used in a composite slab system; however, it was necessary to properly support the ice. Steel columns supporting the rinks range from W12x58s to W14x257s. Please see Figure 6 for a typical framing plan.



Page 7 of 29

Megan Kohut	Structural Option
Kettler Capitals Iceplex	Dr. Linda Hanagan
Arlington, Virginia	October 5, 2007


Area 8C

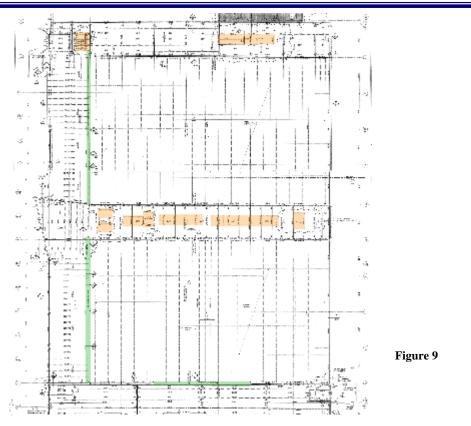
Area 8C is located adjacent to Area 8B and ice rink no. 2. The Washington Capitals team offices, locker rooms, and weight room are located in this area. The slab in Area 8C consists of $3^{1}4$ " lightweight concrete over 2" deep 18 gage galvanized metal deck (total thickness = $5^{1}4$ ") reinforced with 6x6 W1.4x1.4 WWF. The shear studs in this location were also $3^{4}4$ " x 4" long. Girders supporting the slab consist of mostly W27s and W33s. Heavier W33x201 are used to support a hot tub (see Figure 7A). These girders span 54'-0" and are spaced at 10'-0" oc. Composite beams range from a W21x44 spanning 22'-6" to a W36x439 spanning 50'-0". Steel columns supporting Area 8C are W14s weighing from 53 to 398 lb/ft and run all the way to the roof in most cases. See Figure 7 for a typical framing plan.

Area 8D

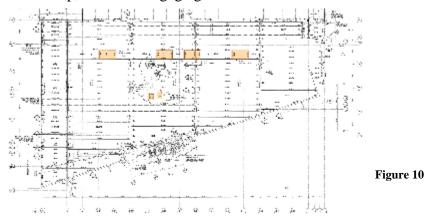
Area 8D is located just to the west of area 8C and is an expansion of the existing parking garage. The addition will add approximately 60 more parking spaces. This area is constructed of a solid 5" thick normal weight concrete slab. Reinforcing consists of continuous rebar mats of #6 at 12"oc top and #4 at 12"oc bottom running in the north-south direction and #4 at 12"oc top and bottom running in the east-west direction. Composite W18s and W21s support the west side of the slab. These span 38-0" and are spaced at 11'-0"oc. Composite W21s and W30s support the east side of the slab. These span as long as 69 ft. and are also spaced at 11'-0"oc. These girders span into composite beams which range from W21x44 to W30x173 and span from 20-42 ft. The steel columns below consist of W10s, W12, and W14s. See Figure 8 for a typical framing plan of area 8D.

Page 8 of 29

Areas 9A and 9B


Areas 9a and 9B support the mezzanine and bleachers that overlook the ice rinks. Both areas consist of a $3\frac{1}{4}$ " lightweight concrete structural slab over a 2" deep 18 gage galvanized composite metal deck (total thickness = $5\frac{1}{4}$ ") reinforced with 6x6 W1.4x1.4 WWF. Composite girders are typically W16x26s and W12x14s spaced at 9'-0"oc and span 30'-'0". Composite beams range from W16s to W24s. They span 28'-0" including a 4 ft. cantilever on the west side of Area 9A. Beams in Area 9B span 27'-0". Most of the columns supporting level 9 are a continuation of the columns supporting level 8.

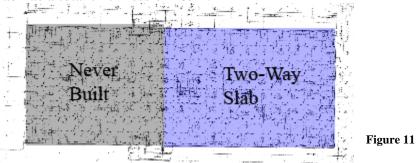
Area 9C


The Washington Capitals' corporate offices are located on the 9th floor of the Iceplex in Area 9C. The floor slab in this area is a 3¹/₄" lightweight concrete structural slab over a 2" deep 18 gage galvanized composite metal deck (total thickness = 5¹/₄") reinforced with 6x6 W1.4x1.4 WWF. Composite girders vary in size from light W24s to heavy W33s. The maximum span of these girders is 54'-0" and they are spaced at 10'-0"oc. The girders frame into very large composite beams which can be as large as a W33x291. The columns supporting Area 9C are continuous from the 7th floor.

Roof Framing

The need for long-span, column free spaces was critical in the design of the roof over the two ice rinks. Please see Figure 9 for a roof plan. The roof joists above the rinks are open web steel joists, 68DLH16. These joists have a depth of 68" and have the capacity to support large loads with extremely long spans. The span of these roof joists are 120 ft. and are spaced at 5'-6" oc. Three custom trusses were also designed to support the roof over Areas A and B and are shown in green. Two of these trusses are located along grid 2 and have a small slope to them. They span 120 ft. and are designed with WTs as top and bottom chords and double angles and single angle diagonals. A shorter custom truss, along grid V spans 81 ft. with no slope. This truss consists of wide flange top and bottom chords with double angle diagonals. Additional K-Series open web steel joist and wide flange shapes support the remaining part of the roof in Area A and B. The roof deck in this area is $1\frac{1}{2}$ " deep, wide rib 18 gage galvanized metal deck.

The roof framing of Area C consists of a mix between open web steel joists and wide flange beams. See Figure 10 for a plan. The joists are LH and K-Series joists spaced at 5'-0"oc and span a maximum of 54 ft. The wide flange section of roof consists of mostly W24s with a few W18s. These are also spaced at 5'-0"oc and span 54 ft. The roof deck in Area 8C is also 1¹/₂" deep, wide rib 18 gage galvanized metal deck.

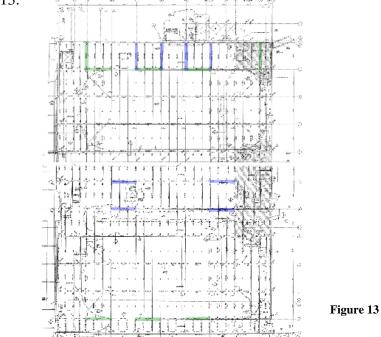


There are several roof top mechanical units that were taken into consideration during the design of the roof system. They are shown in orange. Here, increase steel was used to account for the additional load. These areas can be seen shaded in the above plans.


Lateral System Framing

Since the Iceplex was built on top of an existing parking structure that was also expanded, there are several different types of lateral resisting frames throughout the building. This report will now concentrate on the lateral system of all nine levels of Areas A and B of the structure.

The system of the 1950s parking garage consists of a two-way slab system. This system can be found on the entire footprint of the building and on all five levels as you can see in Figure 11. This slab has a total thickness of $10\frac{1}{2}$ ".


When the structure was expanded both horizontally and vertically in the 1980s, reinforcement of the lateral system was needed. The original lateral system is shown in yellow in Figure 12. Areas A and B on levels 7 and 8 were framed using composite steel with moment connections. There are ten moment frames spanning the east-west direction along the exterior of the building. Two frames spanning the north-south direction run the entire width of the building at both sides of the structure.

Finally, when the Iceplex was added onto the parking structure, a mix of braced frames and moment connections was used. Eight braced frames were constructed on the 7th level reinforcing the existing structure for additional lateral forces. These frames are shown in red in Figure 12 and a detail of these braced frames is shown in Figure 12A. On the 8th level, there are a total of eight braced frames, four in each direction. These are shown in

Megan Kohut	Structural Option
Kettler Capitals Iceplex	Dr. Linda Hanagan
Arlington, Virginia	October 5, 2007

blue in Figure 13. Eight moment frames were constructed and were spaced evenly throughout with the exception of the voided areas from the ice rinks. These are shown in green in Figure 13.

All lateral resisting members on the 9th level in this area are located in Area 9B. Seven moment frames span the north-south direction and four span the east-west direction. Figure 14 shows the location of all lateral resisting frames in Area 9B.

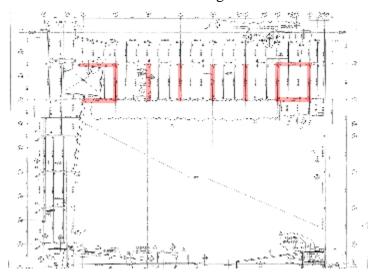


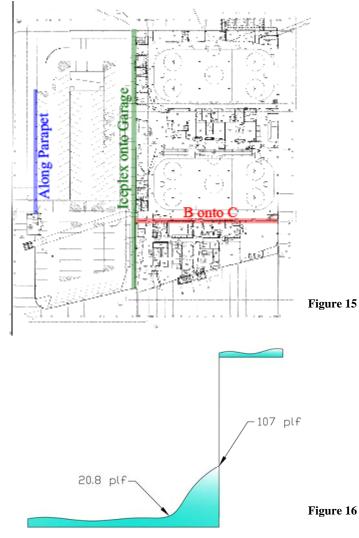
Figure 14

BUILDING LOADS

Live Loads

AREA	PSF USED BY ENGINEER OF RECORD	PSF USED IN ANALYSIS
Framed Floor Areas	100	100
Lobbies, Stairs, Exits	100	100
Mechanical	As noted on plans	As noted on plans
Ice Rink	100	100
Parking Decks	50	40
Parking Decks (Top Level)	80 (50LL + 30 snow)	70 (40LL + snow)
Roof LL	30 or snow load (whichever is greater)	25 or snow load (whichever is greater)

Dead Loads


AREA	PSF USED BY ENGINEER OF RECORD	PSF USED IN ANALYSIS
	1.5" ice = 7.8	
	5" NW Concrete = 63	
Rink	4" Insulation = 6	132
NIIK	4" Sand = 40	152
	Misc = 15	
	132	
Wet Areas	30	30
Parking	3	3
Planter	440	440
Other	15	15

Megan Kohut	Structural Option
Kettler Capitals Iceplex	Dr. Linda Hanagan
Arlington, Virginia	October 5, 2007

Snow Loads

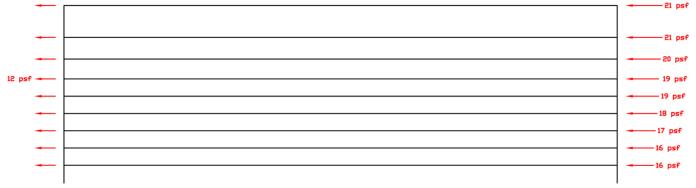
Since the Iceplex has various roof heights, snow drift should be examined in order prevent overloading the structure. Snow drift was analyzed using ASCE7-2005. Three snow drift conditions were analyzed-first, the area where the Iceplex meets the 8th floor of the parking structure; second, along the garage parapet on the roof; and finally, the area where area B and C meet at varying roof heights. See Figure 15 for a diagram of these locations. The worst of these possible conditions was determined to be on the 8th floor parking structure near the Iceplex vertical expansion, shown in green. See the loading diagram shown below. Below is a list of the input parameters used during analysis. Please see the appendix for the calculations and loading diagrams.

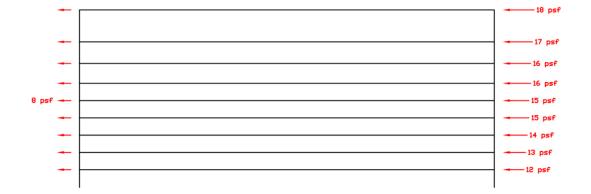
- Ground Snow Load (Pg) 25 psf
- Snow Exposure Factor (C_e) 0.9
- Thermal Factor (C_t) 1.2
- Importance Factor (I) 1.1

Page 14 of 29

Megan Kohut	Structural Option
Kettler Capitals Iceplex	Dr. Linda Hanagan
Arlington, Virginia	October 5, 2007

Wind Loads


Wind loads were calculated in accordance with ASCE7-05. A wind analysis of Areas 8A and 8B was performed. Below is a list of assumptions made during analysis. It should be noted that a partially enclosed building was assumed for the entire structure since the majority of the structure is a parking garage with large openings on the façade. It was also assumed that the entire footprint of the building extends the full nine floors. This will create a larger wind surface than in realty; therefore, giving conservative wind loads. The loading diagram is also shown below. It was assumed during analysis that wind forces will hit all four sides of Areas A and B without the interference of adjacent structures. In reality, wind forces will be blocked on the north from the Ballston Mall, on the south on all 9 levels from Area C, and on the west on levels 1-7 from the parking structure. Please see the appendix for the calculation spreadsheets.


1.15

В

1.0

- Basic Wind Speed (V) 90 mph
- Wind Directionality Factor (K_d) 0.85
- Importance Factor (I)
- Exposure Category
- Internal Pressure Coefficient (C_{pi}) 0.18
- Topographic Factor (K_{zt})
- External Pressure Coefficient (C_{p,w}) 0.8
- External Pressure Coefficient $(C_{p,l})$ -0.5
- External Pressure Coefficient (C_{p,s}) -0.7

Megan Kohut	Structural Option
Kettler Capitals Iceplex	Dr. Linda Hanagan
Arlington, Virginia	October 5, 2007

Seismic Loads

Seismic loads were calculated using ASCE7-05. A seismic analysis was completed on Areas A and B. Below is a list of input parameters used during analysis and the loading diagram. Please see the appendix for the calculation spreadsheet.

		m spreadone en
•	Ss	0.154
•	S1	0.0051
•	Site Class	D
•	Occupancy Category	III
•	Fa	1.6
•	F _v	2.4
•	Importance Factor (I)	1.25
•	Response Modification Coefficient	3 (most conservative)
•	Approximate Period (T _a)	0.65

Final Results	
Base Shear:	<mark>400 kip</mark>
Overturning Moment:	<mark>27,000 ft k</mark>
-	

25 k
110 k

SPOT CHECK OF FRAMING DESIGN

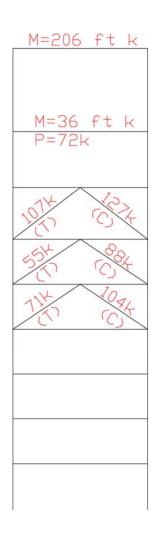
Area 8B Girder

The first structural element checked was a girder supporting the ice rink in Area 8B. There were three different loading cases for this girder. First, a uniformly distributed dead load (including superimposed dead load from the excess weight of the rink slab) and a uniformly distributed live load; second, the same uniformly distributed load as in the first case, plus a live load from the zamboni repairing the ice; and finally, a load case that takes into consideration only the wet weight of the concrete. It was found that the first case will control in flexure and in the required I_{LB} needed for the composite system, and the last case will control over the required moment of inertia for deflection. Based on the analysis, using a W18x40 girder with 13 shear studs was the most economical choice. A original design required a W18x40 with 36 shear studs. The original design differed only in the number of shear studs. The probable reason for this difference is that more composite action was desired by the structural engineer of record; therefore, more shear studs were used. Please see the appendix for this design calculation.

Composite Deck

The United Steel Deck, Inc. design tables found online were used in the design of the floor deck. The same M_u from the girder design was used from the deck tables. Using this required moment capacity, an adequate deck was not found. This is because these tables use an f'_c of 3 ksi where the strength of the concrete used was 5 ksi. It is believed that this will significantly increase the moment capacity of the composite deck. A designer might need to contact USD to find design moments for concrete of this strength. Please see the appendix for the design table that was used in this analysis.

Roof Joist


Due to the required long span over the two ice rinks, there was only one practical design for the roof framing, bar joists. Since the joists span a long 120 ft., there was only one series of bar joist that would work and that was the DLH Series. Based on a roof live load of 25psf and an approximate roof dead load of 30psf, a 64DLH15 would be adequate. (25+30)*5=275plf+43plf (weight of joist)=318plf<375plf. The original design calls for a 68DLH16 which has load capacity of 441plf. This difference could be due to an under-estimation of the roof dead load.

Lateral Braced Frame

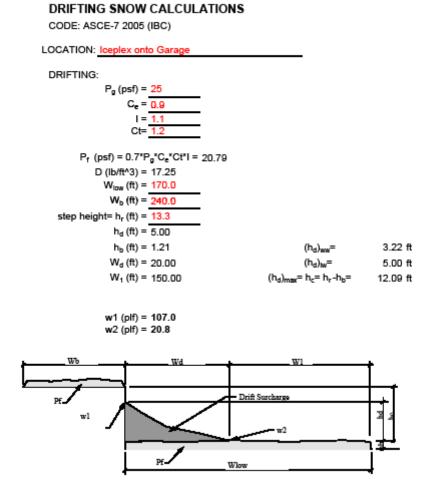
A RAM model was used to analyze the lateral system of the building. Using the parameters listed in the Wind Load section, member forces for the braced frame shown below were found. The original design calls for HSS8x6x3/8. As shown in the diagram

Megan Kohut	Structural Option
Kettler Capitals Iceplex	Dr. Linda Hanagan
Arlington, Virginia	October 5, 2007

the maximum tensile force these braces will see is 107 kips and the maximum compressive force is 127 kips (unfactored). According to Table 5-4 in the AISC Steel Manual, the ASD tension strength of an HSS8x6x3/8 is 195 kips. There is a slight difference between the original design but not much. One possibility for this difference could be that lower wind forces may have been calculated using BOCA rather that IBC. Another possible reason for the difference could be that drift controlled instead of axial strength. According to Table 4-3 in the AISC Steel Manual, the compressive strength of an HSS8x6x3/8 is 142 kips with an effective length of 18 ft. Once again there is a slight difference in the design which could be for the same reasons. Overall, it can be concluded that the lateral braces in this frame were designed effectively and efficiently.

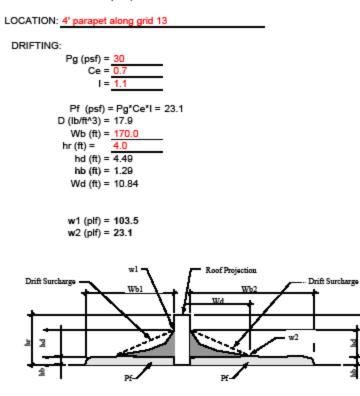
CONCLUSION

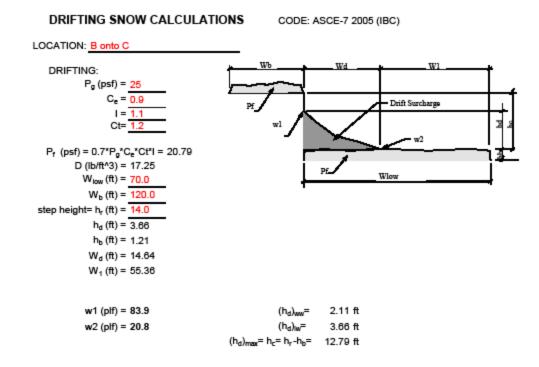
After analyzing the structural systems of the Kettler Capitals Iceplex, I have made a few conclusions. First, some loading cases are different. This is because a different code was used for the design than from my analysis. BOCA 1996 was used for design and IBC 2006/ASCE 7-05 was used during the analysis for this report. This created different live, wind, and seismic loads on the structure. Second, I have concluded that, through a spot check of the design, the structure was designed accurately. There were a few small differences from the original design to my design. This was most likely due to varying criteria, such as drift, and design tables that were meant for different material properties, such as the composite deck system.


APPENDIX

Beam Strengths from Geotechnical Report

		Windsor Probe Results	
Floor	Column Location	(psi)	(psi) ¹
1	Т-6	6,747	5229
1	L-8	6,526	5058
1	M-3	6,747	5229
1	N-11	4,907	3803
1	W.2-10.8	6,305	4887
	Average :	6,246	4,841
4	Beam at Y-3.5 ³	6,379	4944
4	Y-3.5	6,452	5001
4	T-9	6,158	4773
4	L-2	6,600	5115
	Average :	6,397	4,958
6	M-11	6,526	5058
6	S-84	5,275	4088


Structural Option Dr. Linda Hanagan October 5, 2007


Snow

DRIFTING SNOW CALCULATIONS

CODE: ASCE-7 2005 (IBC)

Windward

Leeward Side Walls ALL

0.996 20.19 0.996 20.19

Main Windforce Resisting System

CODE:	CODE:										
	International Building Code 2000 / ASCE 7-98										
1017											
INPUT:				Building Height (H):	103	#					
			Building Depth (L):	240							
				Building Width (B):	320	ft	Wind on Br	oad Face of	Building		
			N	lumber of Storles (N):	9				-		
				asic Wind Speed (V):		MPH	Figure 6-1				
		1	Wind Dire	ectionality Factor (Ka):	0.85		Table 6-6 (
				Building Category:			Table 1-1 (
				importance Factor (I): Exposure Category:	1.15 B		Table 6-1 () 6.5.6.1 (pg				
			Top	ographic Factor (K#):	1.00		6.5.7 (pg 2				
	Gust F	Fifect Fac		Gf): Use Calculated?	Yes		6.5.8 (pg 2		Freq	uency (Hz) -	1.11
				Coefficients (+/-GCa):	0.18		Table 6-7 (
	Exter	nal Press	ure Coef	ficient (Cp windward):	0.8		Figure 6-3				
				efficient (Cp leeward):	-0.3		Figure 6-3			L/B =	0.75
	Exte	amai Pres	ssure Co	efficient (C _P sidewall):	-0.7		Figure 6-3	(pg 42)			
FORMULAS:											
FORMULAS.			n - aG	Cp - QI(GCpl)	Equation 6-	15/6512	2 no 31)				
		0. = (Equation 6-						
		÷.,	0.002000	wheele wheele	Equilibrium	10 (0.0.10	, pg 00)				
CALCULATIO	DNS:										
	Gust Effect I			frequency (n ₁) =	1.11	Hz	Rigid			go = gv =	
	z =	61.8	ft	lz =	0.270		Lz =	394.4		Q-	0.777
		Structures Structure		G = 0.925[(1+1.7					Equation 6-2 (6.5 Equation 6-6 (6.5		
	Flexible	structure	es.	Gr = 0.925[(1+1.7lg*8	qri(go~20,~2	+gr~2(R~	2)))/(1+1./9	/lz)]	Equation 6-6 (6.5	.8.2 pg 29)	
	Ge -	4.215		b -	0.45		α-	0.25		Vz -	69.49
		6.307		Ro -	0.044		тр =	7.58		Rh -	0.123
	ηa -	23.54		Ra -	0.042		η. =	59.10		RL -	0.017
	R =	0.110									
	Height	_		Velocity	Pressure an Ext. Pres.		orce summ Pressure		ned Pressure	Deelan	.oad Ww + Lw
Location	(ft)	Kz	Q₂	G	QGC _p	0	Q(GCpl)	(+GCal)	(-GCpl)	Height (ft)	
	10.25	0.575	11.65	0.799	7.45	20.19	3.63	3.81	11.08	10.25	12.28
	20.25	0.626	12.69	0.799	8.11	20.19	3.63	4.48	11.75	20.25	12.95
	30.25	0.702	14.23	0.799	9.10	20.19	3.63	5.46	12.73	30.25	13.94
	40.25	0.762	15.44	0.799	9.87	20.19	3.63	6.24	13.51	40.25	14.71
	50.25	0.812	16.46	0.799	10.52	20.19	3.63	6.88	14.15	50.25	15.36
	60.25	0.855	17.33	0.799	11.08	20.19	3.63	7.44	14.71	60.25	15.92
	71.75 84.25	0.899	18.22 19.07	0.799	11.64 12.19	20.19 20.19	3.63 3.63	8.01 8.56	15.28 15.83	71.75 84.25	16.48 17.03
	84.25	0.941	20.19	0.799	12.19	20.19	3.63	9.27	15.63	84.25	17.03
	102.75	0.990	20.19	0.755	12.50	20.19	3.03	5.21	10.04	102.73	17.74

0.799

-4.84 -11.29 20.19 20.19 3.63 3.63 -8.47 -14.92 -1.21 -7.66

Main Windforce Resisting System

CODE:				
International Building Code	2000 / ASCE 7-98			
INPUT:				
INFOT.	Building Height (H):	103 ft		
	Building Depth (L):	320 ft		
	Building Width (B):	240 ft	Wind on Narrow Face	of Building
	Number of Stories (N):	9		-
	Basic Wind Speed (V):	90 MPH	Figure 6-1 (pg 33)	
Wind	Directionality Factor (Ka):	0.85	Table 6-6 (pg 61)	
	Building Category:		Table 1-1 (pg 4)	
	Importance Factor (I):	1.15	Table 6-1 (pg 55)	
	Exposure Category:	в	6.5.6.1 (pg 28)	
	Topographic Factor (K#):	1.00	6.5.7 (pg 29)	
	or Gf): Use Calculated?	Yes	6.5.8 (pg 29)	Frequency (Hz) = 1.11
	re Coefficients (+/-GCpl):	0.18	Table 6-7 (pg 62)	
	oefficient (Cp windward):	0.8	Figure 6-3 (pg 42)	
	Coefficient (Cp leeward):	-0.5	Figure 6-3 (pg 42)	L/B = 1.33
External Pressure	Coefficient (Cp sidewall):	-0.7	Figure 6-3 (pg 42)	
FORMULAS:				
	qGCp - qi(GCpi) E	quation 6-15 (6.5.1	12 2 na 31)	
		quation 6-13 (6.5.)		
4 0.002	colicition (institution of the	danne to (e.e.	(0 pg 00)	
CALCULATIONS:				
Gust Effect Factor:	frequency (n ₁) =	1.11 Hz	Rigid	go = gv = 3.4
z= 61.8 ft	lz =	0.270	Lz = 394.4	Q = 0.795
Rigid Structures:	G = 0.925[(1+1.7ge			Equation 6-2 (6.5.8.1 pg 29)
Flexible Structures:	Gr = 0.925[(1+1.7l#"sqr	n(go~2Q~2+ge~2(H	(*2)))/(1+1./gviz)]	Equation 6-6 (6.5.8.2 pg 29)
ge = 4.215	b - 0	45	α = 0.25	Vz = 69.49
N1 = 6.307	Ra = 0.	.044	ηh = 7.58	Rh = 0.123
η# = 17.65	Re = 0	055	ηL = 78.80	RL = 0.013
R = 0.126			-	

	Velocity Pressure and Wind Force Summary											
Location	Height	K2	Q:	G		Ext. Pres. Internal Pressure			Combined Pressure		Design Load Ww + Lw	
Location	(ft)				qGCp	q	q(GCpl)	(+GCpl)	(-GCpl)	Height (ft)		
	10.25	0.575	11.65	0.810	7.55	20.19	3.63	3.92	11.18	10.25	15.73	
	20.25	0.626	12.69	0.810	8.23	20.19	3.63	4.59	11.86	20.25	16.40	
	30.25	0.702	14.23	0.810	9.23	20.19	3.63	5.59	12.86	30.25	17.40	
	40.25	0.762	15.44	0.810	10.01	20.19	3.63	6.38	13.64	40.25	18.19	
	50.25	0.812	16.46	0.810	10.67	20.19	3.63	7.03	14.30	50.25	18.84	
	60.25	0.855	17.33	0.810	11.23	20.19	3.63	7.60	14.87	60.25	19.41	
	71.75	0.899	18.22	0.810	11.81	20.19	3.63	8.17	15.44	71.75	19.98	
	84.25	0.941	19.07	0.810	12.36	20.19	3.63	8.73	16.00	84.25	20.54	
	102.75	0.996	20.19	0.810	13.08	20.19	3.63	9.45	16.72	102.75	21.26	
Windward												
Leeward	ALL	0.996	20.19	0.810	-8.18	20.19	3.63	-11.81	-4.54			
Side Walls	ALL	0.996	20.19	0.810	-11.45	20.19	3.63	-15.08	-7.81	1		

0.005

Seismic

SEISMIC LOADING CALCULATIONS

REF: ASCE7-05

General Information

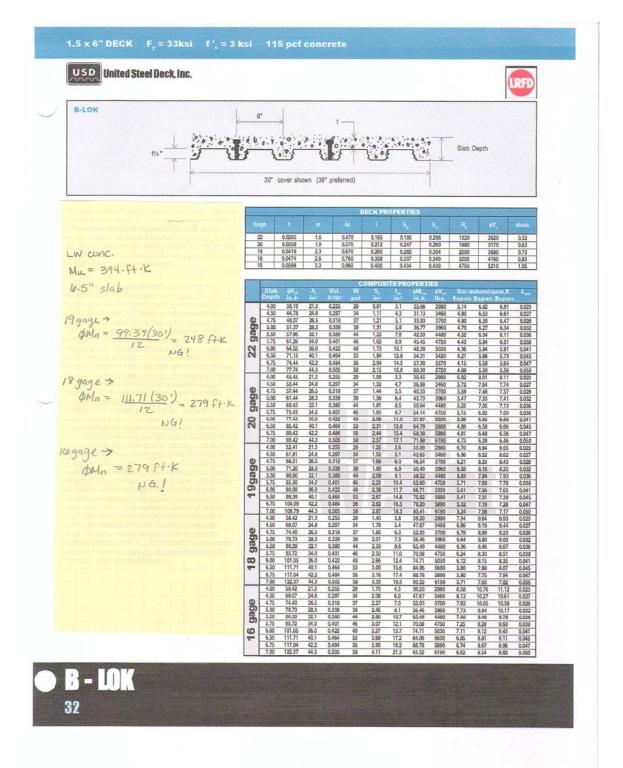
Ss= S1=	0.154 0.0051	Fa= Fv=	1.6 2.4	SDS= SD1=	0.164
Site Class:	D				
Occ. Cat.				Seismic Design Category:	Α

Seismic Response Coefficient

=	1.25	CSa=	0.068	CS=
R=	3.00	CSmax=	0.005	
Ta=	0.65	CSmin=	0.010	

Equivalent Lateral Force Calculation

Fx = 0.01Wx	Vx = story shear	
Fx = story forces	W =	76190.0
	V=Cs*W	400.4


Floor(x)	Height(ft.)	Wx(kips)	Fx(kips)	Vx(kips)	Mx (ftkips)
Roof	102.75	2500.0	25.0	25.0	0.0
9	84.25	1600.0	16.0	41.0	2568.8
8	71.75	8000.0	80.0	121.0	3916.8
7	60.25	5000.0	50.0	171.0	9656.8
6	50.25	5000.0	50.0	221.0	12669.3
5	40.25	11000.0	110.0	331.0	15181.8
4	30.25	11000.0	110.0	441.0	19609.3
3	20.25	13000.0	130.0	571.0	22936.8
2	10.25	13000.0	130.0	701.0	25569.3
1	0.00	6090.0	60.9	761.9	26901.8
total		76190.0			

Girder Check

P	Design of Area 8 B
	Girder 1
0	Composite Steel $f'_c = 5000 \text{ psi}$ spacing = 9'-0'' span = 30'-0'' $t_{slob} = 6,5''$
	A) $M_{L} = 100 \text{ psf}$ A) $M_{L} = 100 \text{ psf}$
	Wu= 1.20+ 1.62 = 1.2(185)+ 1.6(100) = 386 psf + 9' = 3.5 K/F+
	$M_{u} = \frac{W_{u}L^{2}}{8} = \frac{3.5(30)^{2}}{8} = 3.94 \text{ ft} \cdot \text{K} + \text{CONTROLS}$
	$\Delta L = 4/480$ to prevent ice from cracking
	$\frac{L}{480} = \frac{5_{NL}L^{4}}{384EI_{B}} \Rightarrow \frac{30(12)}{480} = \frac{5(0.9)(30)^{4}(1728)}{384(29000)I_{48}}$
	ILB 2 755 in 4 * CONTROLS
0	B)
	ML = 1.4 (188) = 203 pst x9 = 2.4415t
	$Mu = \frac{w_{u}L^{2}}{8} + \frac{PL}{4} = \frac{2.4(30)^{2}}{8} + \frac{8(30)}{4} = 330 \text{ ft} \cdot \text{K}$
	$\Delta_{L} = \frac{L}{480}$
	$\frac{L}{480} = \frac{PL^3}{48E\Gamma_{LB}} \Rightarrow \frac{30(12)}{480} = \frac{8(30)^2(1728)}{48(29000)}$
	ILB = 358 in 4
	c) we (Wet wt. of concrete) = 56psf
	Wu= 1.40= 1.4 (56) = 78.4 psf ×9'= .706 K/st
	$Mu^{2} \frac{w_{u}L^{2}}{8} = \frac{0.706(30)^{2}}{8} = 80 \text{ ft} \cdot \text{K}$
	$A_{T} = \frac{4}{480}$
	$\frac{L}{480} = \frac{5\omega L^{4}}{384ET} \Rightarrow \frac{30(12)}{480} = \frac{5(0.706)(30)^{4}(1728)}{384(24000)T}$
	IZ 592 in 4 CONTROLS

	besign of Area. 8B Gurder Z
0	Regurements: $I \ge 592 \text{ in } 4$ (W18×40 min.) $I_{ug} \ge 755 \text{ in } 4$ $\phi M_n (composite) \ge 394 \text{ ft} \cdot \text{k}$ Assume $a=1: 42 = t_{slab} - 9/2 = 6.5 - 1/2 = 611$
	PNA ZGn OMm # studs Bm. wt. stud Wt. Total Wt. $W18 \times 40$ 7 147 433 13 1200 130 1330 $W18 \times 50$ 7 183 549 16 1500 160 1660 $W18 \times 50$ 7 183 549 16 1500 160 1660 $W18 \times 55$ 7 202 608 18 1650 180 1830 $W21 \times 55$ 7 202 608 18 1650 180 1470 $W21 \times 50$ 7 184 606 16 1500 160 1660 $W21 \times 55$ 7 203 680 18 1650 180 1830
	3/4" shear stud w) deck $\frac{Wr}{hr} = \frac{6}{3} = 2 > 1.5 \qquad O_n = 23^{k} (Estimate - 5 ksi concrete)$ $\# \text{ studs} = \left(\frac{\Sigma Q_n}{Q_n}\right) 2$
	beff = spacing = 91 $1/4 span = 7.5^{1/4} min$ $a = \frac{Z.Qn}{0.85f_c beff} = \frac{147}{0.85(5)(7.5 \times 12)} = 0.38 < 1 \therefore assumption was conservative.$
	$V_{2} = t_{slab} - \frac{q}{2} = \frac{6.5 - 0.38}{2} = \frac{6.3}{4M_{n}}$ $V_{2} = t_{slab} - \frac{q}{2} = \frac{4.3}{4M_{n}}$ $V_{2} = \frac{6.5}{4M_{n}} = \frac{4.39}{4M_{n}}$ $V_{2} = \frac{6.5}{4M_{n}} = \frac{4.39}{4M_{n}}$
	use W18*40 w/ (13) 3/4" shear studs min.

Composite Deck Check

Roof Bar Joist Check

STANDARD LOAD TABLE/DEEP LONGSPAN STEEL JOISTS, DLH SERIES Based on a Maximum Allowable Tensile Stress of 30 ksi

Joist Deisignation		Dapth In Inches	ir	ELOAD* 1 Lbs. tween	CLEAR SPAN IN FEET															
	(Joists Only)			100-104						110								118		
60DLH12	29	60	31100	31100	295 168	289 163	284 158	279 154	274 150	270	265 142	261 138	256 134	252 131	248 128	244 124	240 121	236 118	232 115	228 113
60 DL H13	35	60	37800	37800	358 203	351 197	345 191	339 187	333 181	327	322 171	316	311 163	306 158	301 154	296 151	291 147	286 143	282 139	277 135
60DLH14	40	60	42000	42000	398 216	391 210	383	376	370 193	363	356 183	350	344 173	338 170	332 165	327 161	321 156	316 152	310 149	305 145
60DLH15	43	60	49300	49300	467	458	450 242	442	434	427	419	412 210	405	398 200	392 194	385	379 185	373 180	367 175	361 171
60 DL H16	46	60	54200	54200	513 285	504 277	494 269	485	476 255	468	460	451	444	436 223	428	421 211	414	407	400	393 190
60DLH17	52	60	62300	62300	590 324	579 315	569 306	558 298	548 290	538 283	529 275	519 267	510 261	501 254	217 493 247	484	476	468	460	453 217
60DLH18	59	60	71900	71900	681	668 357	656 346	644 337	632 327	621 319	610 310	599	589	578	568 279	559	230 549 266	540 259	531	522 246
			75-99	100-112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
64DLH12	31	64	30000	30000	264 153	259 150	255 146	251 142	247 138	243 135	239 132	235 129	231 125	228 122	224 119	221 116	218 114	214 111	211 109	208 106
64DLH13	34	64	36400	36400	321 186	315	310 176	305	300 168	295 163	291 159	286	281 152	277	273 144	269 141	264 137	260 134	257	253 128
64DLH14	40	64	41700	41700	367 199	360 193	354 189	349 184	343	337 174	332 171	326	321 162	316 158	311 154	306 151	301 147	296 143	292 140	287 136
64DLH15	43	64	47800	47800	421	414	407	400	394 211	387	381 201	375	369 191	363	358	352 177	347 173	341 170	336 165	331 161
64DLH16	46	64	53800	53800	474 262	466 254	458	450	443 235	435	428	421	414 213	407	401	394 198	388 193	382 189	376	370 180
64DLH17	52	64	62000	62000	546 298	536 290	527	518 275	509 268	501 262	492	484	476	468	461 231	454	446	439	432 210	426 205
64DLH18	59	64	71600	71600	630	619	608	598	587	578	568	559	549	540	532	523 255	515	507	499	491
			80-99	100-120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136
68DLH13	37	68	35000	35000	288	284	279	275	271	267	263	259	255	252	248	244	241	237	234	231
68DLH14	40	68	40300	40300	171 332	168 327	164 322	159 317	155 312	152 308	149 303	145 299	142 294	138 290	135 286	133 281	130 277	127 273	124 269	121 266
68DLH15	40	68	45200	45200	184 372	179 365	175 360	171 354	167 348	163 343	159 337	155 332	152 327	148 322	145 317	141 312	138 308	135 303	133 299	130 294
68DLH16	49	68	53600	53600	206 441 242	201 433 236	196 427 230	191 420 225	187 413	182 407	178 400 209	174 394 204	170 388 199	166 382 195	162 376 190	158 371 186	155 365 182	152 360 178	148 354 174	145 349
68DLH17	55	68	60400	60400	497 275	489 268	230 481 262	474	219 467 240	214 460 244	453	446 232	439 228	190 433 222	427 217	420	414 208	408	403	171 397 194
68DLH18	61	68	69900	69900	575 311	566 304	557 297	549 289	540 283	532 276	524 289	516 263	508 257	501 251	493	486	479	472	465	459 219
68DLH19	67	68	80500	80500	662 353	651	641	631 328	621 320	611	601	592	583 291	574 285	565	557	548	540 260	532 254	525 24.8
			84-99	100-128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144
72DLH14	41	72	392.00	39200	303 171	298 167	294 163	290 159	285 155	281 152	277	274	270 143	266 139	262 136	259 133	255 131	252 128	248 128	245 129
72DLH15	44	72	44900	44900	347 191	342 187	336 183	331 178	326 174	322 171	317 167	312 163	308 160	303 156	299 152	295 150	291 147	286 143	282	279 137
72DLH16	50	72	51900	51900	401 225	395 219	390 214	384	378 205	373 200	368 196	363 191	358 188	353 183	348 179	343 175	338 171	334 169	329 165	325 161
72DLH17	56	72	58400	58400	451 256	445 250	438 245	432	426 233	420	414	408	402 213	397 209	391 205	386 200	381 196	376 191	371 188	366 184
72DLH18	59	72	68400	68400	528 289	520 283	512 276	505 270	497 265	490 258	483 252	479	470 242	463 236	457 231	450 227	444	438	432	426
72DLH19	70	72	80200	80200	619 328	609 321	600 313	591 306	582 300	573 293	565 296	557 280	549 274	541 268	533 263	526 257	518 251	511 247	504 241	497 236

*The safe uniform load for the clear spans shown in the Safe Load Column is equal to (Safe Load)/(Clear span + 0.67). (The added 0.67 feet (8 inches) is required to obtain the proper length on which the Load Tables were developed).

In no case shall the safe uniform load, for clear spans less than the minimum clear span shown in the Safe Load Column, exceed the uniform load calculated for the minimum clear span listed in the Safe Load Column. To solve for <u>live</u> loads for clear spans shown in the Safe Load Column (or lesser clear spans), multiply the live load of the shortest clear span shown in the Load Table by (the shortest clear span shown in the Load Table + 0.67 feet)² and divide by (the actual clear span + 0.67 feet)². The live load shall <u>not</u> exceed the safe uniform load.

